
The Quantifier Exchange rules 
 
In SL we had shortcut rules for allowing us to deal with the negations of →, v, and & 
sentences.  Similarly, we will have a shortcut rule allowing us to more easily deal with 
negated quantifier sentences.   
 
The two equivalences that the rules are derived from are: 
 
~∀xPx is equivalent to ∃x~Px  
~∃xPx is equivalent to ∀x~Px 
 
In each case the negation sign gets ‘pushed in’ to the other side of the quantifier and the 
quantifier is changed.  Remembering that ∀x is a generalized conjunction and ∃x is 
disjunction, it can be seen that these rules are generalized rules instances of DeMorgan’s 
Laws.  Also, the formula following the quantifier in each case is irrelevant.  For example, 
~∀x∃yRxy is equivalent to ∃x~∃yRxy and ~∃z(Pz & ∀y(Py → y=z)) is equivalent to 
∀z~(Pz & ∀y(Py → y=z)). 
 
Note that this rule can be used to show the equivalence of the following:  
 
~∀x~Px is equivalent to ∃xPx  
~∃x~Px is equivalent to ∀xPx 
 
Take the first case.  By QE ~∀x~Px transforms into ∃x~~Px.  It is obvious that this is 
equivalent to ∃xPx (plug in a letter, use a double negation rule and take out the letter).  
As with other rules, I will allow you to simply skip writing ‘~~’ and go straight to ∃xPx if 
you wish. 
 
Here is an theorem that is fairly tricky to prove with just the primitive rules: 
∃x(Px→∀yPy).  However, it is not that difficult to prove using QE. 
 
1 (1) ~∃x(Px→∀yPy)  A 
1 (2) ∀x~(Px→∀yPy)  1 QE 
1 (3) ~(Pa→∀yPy)  2 ∀E 
1 (4) Pa & ~∀yPy  3 Neg → 
1 (5) Pa    5 &E 
1 (6) ~∀yPy   4 &E 
1 (7) ∀yPy   5 ∀I 
 (8) ∃x(Px→∀yPy)  6,7 RAA (1) 
 
Here is another example:  ∃xPx v ∃xQx  ├  ∃x(Qx v Px) 
 
Since there is no obvious way to start, I will  1 (1)  ∃xPx v ∃xQx A 
attempt to prove this by RAA.  Without QE  2 (2) ~∃x(Qx v Px) A 
I would assume each disjunct of 1 and show   2 (3) ∀x~(Qx v Px) 2 QE 



that each led to a contradiction.  This would   2 (4) ~(Qa v Pa)  3 ∀E 
involve two uses of ∃E and is a little tricky.    2 (5) ~Qa & ~Pa  4 DeM 
Using QE makes it a little quicker and possibly 2 (6) ~Qa  5 &E 
more straightforward.     2 (7) ~Pa   5 &E 
       2 (8) ∀x~Qx  6 ∀I 
       2 (9) ~∃xQx  8 QE 
       1,2 (10) ∃xPx  1,9 vE 
       2 (11) ∀x~Px  7 ∀I 
       2 (12) ~∃xPx  11 QE 
       1      (13) ∃x(Qx v Px) 10,12 RAA(2) 
 
 
The QE rule allows us to prove that different ways of saying “Nothing” are equivalent.  
For example, ∀x(Px → Qx) and ~∃x(Px & Qx) are both ways of saying “No Ps are Qs.”  
It is now easy to see why.  Starting with the second sentence, ~∃x(Px & Qx) is equivalent 
to ∀x~(Px & Qx) by QE which is equivalent to ∀x(Px → Qx) by the NegCon rule.  This 
principle generalizes to complicated examples: 
 
At most two Ps can be written as:   
 
~∃x∃y∃z((Px & Py & Pz) & (x≠y & y≠z & x≠z))  
or as ∀x∀y∀z((Px & Py & Pz) → (x=y v y=z v x=z)) 
 
Start with the top.   
~∃x∃y∃z((Px & Py & Pz) & (x≠y & y≠z & x≠z))  
is ∀x~∃y∃z((Px & Py & Pz) & (x≠y & y≠z & x≠z)) by QE 
is ∀x∀y~∃z((Px & Py & Pz) & (x≠y & y≠z & x≠z)) by QE (changing ~∃y into ∀y~) 
is ∀x∀y∀z~((Px & Py & Pz) & (x≠y & y≠z & x≠z)) by QE (changing ~∃z into ∀z~) 
 
To be correct this requires us to be able to use QE on formulas that are inside a larger 
formula.  Like all equivalence rules, this is a valid step although it would require further 
proof.  Here I will simply assert that this is true. 
 
∀x∀y∀z~((Px & Py & Pz) & (x≠y & y≠z & x≠z)) 
is ∀x∀y∀z~(Px & Py & Pz) v ~(x≠y & y≠z & x≠z)) by DeMorgan’s 
is ∀x∀y∀z((Px & Py & Pz) → ~(x≠y & y≠z & x≠z)) by the v→ rule 
is ∀x∀y∀z((Px & Py & Pz) → (~x≠y v ~y≠z v ~x≠z)) by DeMorgan’s 
is ∀x∀y∀z((Px & Py & Pz) → (x=y v y=z v x=z)) by simply removing the double 
negations in the consequent. 
 
Since each of these steps was an equivalence, the process is completely reversible and so 
the two sentences are equivalent to each other. 
 


